fromfilter

Kostas Koukopoulos

August 18, 2002

Abstract

fromfilter is a electronic mail filter using the 1ibmilter API from send-
mail. Its purpose is to prevent misrepresentation and impersonation from
happening inside an organisation.

Contents

I__Introduction 2

2 D O 2

Bb__[ibmilter API codd 3
BT _callback prototyped 3
$ 0= 4
BZTREeaden o v i e e e e e e e e e e e 6
B4 endofmesSagq . - - + v v 4 v e e e e e e e e e e 9
B.o filter description (struct smfiDesc) 12
Bo struct PrivData declaration 13
............................. 15
B mncluded 16

A_TDAP codd 16
BT ouflimd e 16
EZ Tdapincluded e 17
2.3 tvped e e e e e e e e e 17
A olobald e 18
4 o Yo [18
10 q d 20
B7 affmbufe handlerd o 23
ERTTIOd . . . e e e e e 26

b validafion cadd 31
bl wvalidate mecluded00 00000 32
b2 _is_acceptabld i e e e e e e e 32
B3 Taladate addfl a e e e e e e e e e e e e 33

August 18, 2002

b__auxiliary functions

[main funciion

B GNIT Free Documentation Licensd
.1 Applicability and Definition; -
.2 Verbatim Copving

p.o Copying in Quantity
x4 Maodihcationd

36
37
38
38
38
39

40

46
46
47
47
48
50
50
50
51
51
51

53

53

August 18, 2002 ../fromfilter.nw 3

1 Introduction

fromfilter uses the following API’s: the libmilter API, the POSIX threads li-
brary, the OpenLDAP API, the iconv library, a rfc822 header parser and
some other functions unshamefully lifted from the mutt [] source code.

2 Copying

This document

Copyright © Konstantinos Koukopoulos k.koukopoulos@di.uoa.gr
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with no
Invariant Sections.

A copy of the license is included in the section entitled ”GNU Free Doc-

umentation License”.

This program

Fromfilter, apart from beeing free documentation, is also free software.
Each file produced contains the following notice:

/%

*/

(copyright notice)= @ [dp1 fiod)

This file is part of Fromfilter.
Copyright (d) 2002 Konstantinos Koukopoulos <k.koukopoulos@di.uoa.gr>

Fromfilter is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

Fromfilter is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Fromfilter; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

Uses ¢ @32.

1 a free email client available at http://www.mutt.org

USA

August 18, 2002 ../fromfilter.nw

3 1libmilter API code

The code specific to the libmilter API is in the files filter.c and
filter.h.

(filter.c Bd)=
(copyright notice B)

(filter.c includes Bd)
(cleanup function [3)
(libmilter callbacks |id)
(filter description [3)

(filter.h BH)=
(copyright notice B)

#ifndef FE_FILTER H
#define FE_FILTERH
(filter.h includes Bd)

(struct PrivData declaration [i3);
(Libmilter callback decls BH)

#endif
Defines:
FF_FILTER_H, never used.

These two files are full of libmilter API code, so we naturally include
the libmilter header file.

(filter.h includes Bd)= (BY) ma»

#include <libmilter/mfapi.h>

(filter.c includes Bd)= (Bd) EB>

#include <libmilter/mfapi.h>

3.1 callback prototypes

The envelope callback is called with a null-terminated array argv which
is guaranteed to contain the envelope from address in argv[0]. The rest
are the ESMTP arguments.

(envelope declaration Bd)=
sfsistat
envelope (SMFICTX *ctx, char *argv[])

The header callback is called for every header in the message body.
headerf will be the header field name, headerv will be the field value.

(header declaration Bf)= (B

sfsistat
header (SMFICTX *ctx, char* headerf, char * headerv)

August 18, 2002 ../fromfilter.nw 5

The endofmessage callback is called after the message has been com-
pletely submitted. Any modifications to the message must be done here.

g (endofmessage declaration [id)= (£ pd)
sfsistat
endofmessage (SMFICTX *ctx)

This filter is a message-oriented filter, so the callbacks we will be using
are:

s} (Libmilter callback decls pH)= (BY)
(envelope declaration Bd);
(header declaration Bi);
(endofmessage declaration fd);

i (Libmilter callbacks)= (Bd)
(envelope function [id)
(header function pd)
(endofmessage function pd)

3.2 envelope

The envelope callback function is called by libmilter whenever a client
issues amail from command to sendmail . It first allocates and initializes
the space that is private to this context fl. It then retrieves some symbol
values from sendmail (like the auth_authen variable which contains the
username of the authenticated user). Last, it queries the LDAP server for
the necessary information.

ad (envelope function id)= (&)
(envelope declaration Bd)
{
struct PrivData *priv;
char *str;
char *filteq;
int len;

(allocate and initialize private memory Bd)
(get sendmail symbol values Bd)

(create filter and query LDAP server fd)
return SMFIS_CONTINUE;

3

Uses filter [A.

2because this is a message oriented filter, the context is the message

August 18, 2002 ../fromfilter.nw 6

We call smfi_getsymval to retrieve the values of the daemon _name,
auth_authen and auth_author sendmail variables.

daemon name is the value of the "DaemonPortOptions Name=
option, in the sendmail configuration file. The DAEMON_NAME macro should
be defined in the config.h header, to be the name of the daemon whose
messages we should filter. If the daemon_name value is different from what
we expected then we let the message pass. auth_authen is the authentica-
tion entity of the client and auth_author is the entity the client has been
authorized as.

” sub-

(get sendmail symbol values pd)= ()

if (! ((str = smfi_getsymval(ctx, "{daemon_name}"))!=NULL
&& !'strcmp(str, DAEMON_NAME)))
return cleanup(ctx, SMFIS_ACCEPT);

if ((str = smfi_getsymval(ctx, "{auth_author}"))!=NULL)
priv->auth_author = strdup(str);

if ((str = smfi_getsymval(ctx, "{auth_authen}"))!=NULL)
priv->auth_authen = strdup(str);

(filter.c includes Bd)+= (Bd) <Ea BB
#include <config.h>

The smfi_setpriv libmilter call, sets the private memory for this
context, so that the other callbacks for this message can use the same
memory (using smfi_getpriv).

(allocate and initialize private memory pd)= (&)

if ((priv = (struct PrivData *)calloc(l, sizeof (xpriv))) == NULL)

return SMFIS_TEMPFAIL;

smfi_setpriv(ctx, priv);

August 18, 2002 ../fromfilter.nw 7

The string is of the form "uid = username”. query_uid will
use this to do an ldap search, filling priv with the necessary information
from the search results.

(create filter and query LDAP server pd)= ()

if (priv->auth_authen != NULL) {
len = 5 + strlen(priv->auth_authen);

if ((fiIted = (char *)malloc(len))==NULL){
syslog(LOG, "query_id: malloc: %s\n",strerror(errno));
return cleanup(ctx, SMFIS_TEMPFAIL);

}

(void)strlcpy(filtey, "uid=", len);
(void)strlcat (filtey, priv->auth_authen, len);

if (query_uid(Eilted, priv) <O0)
return SMFIS_TEMPFAIL;
} else return cleanup(ctx, SMFIS_TEMPFAIL);

if (priv->auth_author != NULL && !strcmp(priv->auth_author, priv->auth_authen)){
/* TODO query_uid the author too */
}else pafe_fred(priv->auth_author);

Uses filter [and safe_free B74.

(filter.c includes Bd)+= (Bd) <EB EB>
#include <directory.h>

3.3 header

The header callback function is called by libmilter for each header in
the message body. For now, the only headers we are interested in are
From and Sender or, if this message has been forwarded and the sender
has retained the original headers, the Resent-From and Resent-Sender.

(header function pd)= () m@>
(header declaration Bf)
{
struct PrivData *priv;
char *hdr;

priv = smfi_getpriv(ctx);
if (priv == NULL)
return SMFIS_TEMPFAIL;

hdr = headerf;

August 18, 2002 ../fromfilter.nw 8

If we encounter a ”Resent:” header it means that this message has
been forwarded. Thus we are interested in the ”Resent-*” headers (like
”Resent-From”, ”Resent-Sender” etc.). Any ADDRESS structures allocated
by previous invocations of header must be freed.

= (header function pd)+= (fd) <63 mE>
if (!strncmp(hdr, "Resent-", 6)){
priv->resent = 1;
if (priv->from)
rfc822_free_address (& (priv->from)) ;
priv->froms = O;
if (priv->sender)
rfc822_free_address (& (priv->from)) ;
priv->senders = O;
}
If priv->resent is set then we advance the pointer to the header value
by 7 places (if it has that many characters) and then check its value as if
it is a normal header.
ra| (header function pd)+= () <= =3

if (priv->resent) {
if (strlen(hdr) <=7)
hdr += 7;
else
hdr += strlen(hdr);

August 18, 2002 ../fromfilter.nw 9

Next we check to see if this header is of interest to us. If it’s the first
header of the sort that we’ve found, we parse it using the mutt rfc822 and
rfc2047 parsing routines.

B3 (header function pd)+= (fd) <«mB Eav
if (!strncmp(hdr, "From", 4)){
if (! (priv->froms++)){

priv->from = rfc822_parse_adrlist(NULL, headerv);
rfc2047_decode_adrlist (priv->from) ;
}

}else if (!strncmp(hdr, "Sender", 6)){
if (!(priv->senders++)){

priv->sender = rfc822_parse_adrlist(NULL, headerv);
rfc2047_decode_adrlist(priv->sender) ;

EH (filter.c includes Bd)+= (Bd) <BB B>
#include <rfc822.h>
#include <rfc2047.h>

Finally we tell sendmail to continue giving us headers.

&3 (header function pd)+= (i <ea

return SMFIS_CONTINUE;

August 18, 2002 ../fromfilter.nw 10

3.4 endofmessage

The message has been submitted and now we must make any changes
necessary. Any information from the headers that we need has been put
in the private space so we can freely delete all the headers and add our
own after. If the sender is sending as himself we only need to add a From
header. We call validate_addr to check and sanitize the priv->from
address and then write this address in a From header TODO there is
the question if someone sending via an address like Postmaster should be
mentioned in a Sender header.. If all goes well we cleanup after ourselves
and the message has been filtered succesfully.

e&] (endofmessage function pd)= (%))
(endofmessage declaration [id)
{
struct PrivData *priv = smfi_getpriv(ctx);
ADDRESS *cur;
char buf [256];

(delete headers [10d)

if (priv->auth_author){
/* TODO: <validate Sender/From headers>
<write new Sender/From headers> */
Yelseq{
cur = validate_addr (&(priv->from), priv);
(write new From header [(1d)

}
return cleanup(ctx, SMFIS_CONTINUE);
}
o1} (filter.c includes Bd)+= (Bd) <BB mEE>

#include <valid.h> /* for validate_addr */

August 18, 2002 ../fromfilter.nw 11

The number of ” From” headers is priv->froms. We use the libmilter smfi_chgheader
function with a last argument of NULL, which effectively deletes the re-
quested header. The header to delete is specified by the second and third
argument. The second argument is the name of the header field. The
third argument is the index number of the header, i.e. if it is 1 then the
first occurence of the header is deleted, if it is 2 the second and so on.
Because we allow only one From header (which we add in (write new
From header [[1d)) we must succeed in deleting all the headers.

neE] (delete headers [lod)= (pd) mm»

#ifdef DEBUG

syslog(LOG, "deleting %d %s headers\n", priv->froms, (priv->resent)?"Resent-From":"F1

syslog(LOG, "deleting %d %s headers\n", priv->senders, (priv->resent)?"Resent-Sender’
#endif

if (priv->resent){
while (priv->froms--)
if (smfi_chgheader(ctx, "Resent-From", priv->froms+1, NULL) == MI_FAILURE) {;
syslog(LOG, "endofmessage: smfi_chgheader returned MI_FAILURE\n");
return cleanup(ctx, SMFIS_TEMPFAIL);
}
Yelse {
while (priv->froms--)
if (smfi_chgheader(ctx, "From", priv->froms+1, NULL) == MI_FAILURE) {;
syslog(LOG, "endofmessage: smfi_chgheader returned MI_FAILURE\n");
return cleanup(ctx, SMFIS_TEMPFAIL);
}
}

The same goes for the Sender header:

i3] (delete headers [l0d)+= (bd) <mm=

if (priv->resent){
while (priv->senders--)
if (smfi_chgheader(ctx, "Resent-Sender", priv->senders+l, NULL) == MI_FAILURE)
syslog(LOG, "endofmessage: smfi_chgheader returned MI_FAILURE\n");
return cleanup(ctx, SMFIS_TEMPFAIL);
}
Yelse {
while (priv->senders--)
if (smfi_chgheader(ctx, "Sender", priv->senders+1, NULL) == MI_FAILURE) {;
syslog(LOG, "endofmessage: smfi_chgheader returned MI_FAILURE\n");
return cleanup(ctx, SMFIS_TEMPFAIL);
}

August 18, 2002 ../fromfilter.nw

This is pretty self-explanatory f|
me] (write new From header [1d)=

buf [0]="\0";
rfc822_write_address(buf, sizeof (buf), cur);

#ifdef DEBUG
syslog(LOG,"Adding header From: %s\n", buf);
#endif

if (priv->resent)

smfi_addheader(ctx, "Resent-From", buf);
else

smfi_addheader(ctx, "From", buf);

[IH (write new Sender header [1H)=

buf [0]="\0"’;
rfc822_write_address(buf, sizeof (buf), cur);

#ifdef DEBUG
syslog(LOG,"Adding header From: %s\n", buf);
#endif

if (priv->resent)

smfi_addheader(ctx, "Resent-Sender", buf);
else

smfi_addheader(ctx, "Sender", buf);

3Many thanks go to the mutt coders for these nice functions :-)

12

August 18, 2002 ../fromfilter.nw 13

3.5 filter description (struct smfiDesc)

We store our filter description in the global variable. Our filter will
modify and add headers to the message so we must set the flags member
to SMFIF_CHGHDRS | SMFIF_ADDHDRS. For documentation on the rest of the
callbacks check the libmilter documentation .

i) (filter description [[3)=)
struct smfiDesc EiTfed =
{
"test [ilten", /* name */
SMFI_VERSION, /* version */

SMFIF_CHGHDRS |SMFIF_ADDHDRS, /* flags */

/* callbacks */

NULL, /* connect */
NULL, /* helo */
envelope, /* envfrom */
NULL, /* envrcpt */
header, /* header */
NULL, /* eoh */
NULL, /* body */
endofmessage, /* eom */
NULL, /* abort x/
NULL /* close x/
};
Defines:

filter, used in chunks [d, 4, [[64, [7d, B0—23, B4, BZd, 04, (T4, and [3.

4http://sendmail.com/partner/resources/development /milter_api/

August 18, 2002 ../fromfilter.nw 14

3.6 struct PrivData declaration

We declare a structure PrivData that will be contained in some thread-
private memory we will allocate in (envelope function fid). This structure
must preserve, between callbacks, some values that pertain to the specific
message. These are:

mail: a string that contains the attribute mail from the entry that was
given by auth_authen.

cn: a string that contains the attribute cn from the entry that was given
by auth_authen. This roughly corresponds to the Real Name of an
address.

alternates: this null-terminated array of string contains the values of the
multi-value attribute mailAlternateAddress. These are the user-

name/host combinations that the user specified by auth_authen is
allowed to use in outgoing mail.

authorized: this null-terminated array of strings contains the values of
the multi-value attribute mailAuthorizedAddress. These are the
username/host combinations that the user specified by auth_authen
is allowed to send as.

resent: a flag that signals that the message has been forwarded and the
forwarders headers are contained in from and sender.

from:

sender: these two structures are returned from the rfc822_parse rou-
tines, and contain a parsed form of the values of the From and
Sender headers (or the Resent-From and Resent-Sender headers if
resent=1.

froms:

senders: these two integers count the number of occurences of the From
and Sender headers respectively.

=3 (struct PrivData declaration)= (BY)

struct PrivData {
char *mail;
char *cn;
char *cn_el;
char *auth_authen;
char *auth_author;

char **alternates;
char **authorized;

char resent;

ADDRESS *from;
ADDRESS *sender;

August 18, 2002

a

int froms;
int senders;

};

(filter.h includes Bd)+=
#include <rfc822.h>

../fromfilter.nw 15

(B1) <

August 18, 2002 ../fromfilter.nw 16

3.7 cleanup

cleanup frees anything that can be freed in the private structure returning
the status value in 'rc’.

3 (cleanup function [[§)= (Bd)
sfsistat
cleanup (SMFICTX *ctx, sfsistat rc)
{
struct PrivData *priv = smfi_getpriv(ctx);
int i;
if (priv) {
if (priv->mail) Eafe_fred(priv->mail);
if (priv->cn) Eafe_fred(priv->cn);

if (priv->auth_author) fafe_fred(priv->auth_author);

if (priv->authorized){
for(i=0 ; priv->authorized[i] ; i++)
Eafe_fred(priv->authorized[il]);
Bafe_fred(priv->authorized) ;

+
if (priv->alternates){
for(i=0 ; priv->alternates([i] ; i++)
Eafe_fred(priv—>alternates[il]);
Bafe_fred(priv->alternates);
}

if (priv->from) rfc822_free_address(&(priv->from));
if (priv->sender) rfc822_free_address(&(priv->from));

Safe_fred(priv);
smfi_setpriv(ctx, NULL);

return rc;

Uses safe_free B73d.

August 18, 2002

../fromfilter.nw 17

3.8 includes
(filter.c includes Bd)+= (Bd) «mB

#include
#include
#include
#include
#include

<stdlib.h>
<syslog.h>
<errno.h>
<string.h> /* for strlcat, strlcpy etc.. */

<aux.h> /* for Bafe fred */

Uses safe_free B7a.

4 LDAP code

4.1 outline

(directory.c fi6d)=
(copyright notice B)

o~~~ o~~~

ldap includes [[7d)

Idap globals [i8d)
attribute handlers p3)
ldap types [[7H)
init_ldap function [i9)
query_uid function poH)

(directory.h [il6d)=
(copyright notice B)
#ifndef FE_LDAP H
#define FELDAP H
#include <E3Tfed.h>
(init_ldap declaration [[8d);
(query_uid declaration pod);

#endif
Defines:

FF_LDAP_H, never used.
Uses filter T2

August 18, 2002 ../fromfilter.nw 18

4.2 ldap includes

we] (ldap includes [7d)= (L6H)
#include <ldap.h>
#include <pthread.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include <syslog.h>
#include <stdio.h>
#include <errno.h>
#include <config.h>
#include <E3iT¥ed.h>
#include <aux.h>
Uses filter 2.

4.3 types
was (ldap types [TH)= ([LeH)

typedef struct _attr_pair {
char *name;
int (*action) (struct PrivData *priv, LDAPMessage *p, char *attr);

} BEErib_paid;

char * BtIribute nameg[6] = {
"cn;lang-el",
"cn",
"mailAlternateAddress",
"mailAuthorizedAddress",
"mail" s
NULL

};

attributes[6] = {

"cn;lang-el", handleCn 1},

"cn", handleCn 7},

"mailAlternateAddress", handleAlternates 1},
"mailAuthorizedAddress", handleAuthorized },
"mail", handleMail 1},

NULL, NULL }

P N

};

Defines:
attrib_pair, used in chunk PUH.
attribute_names, used in chunk PI].

August 18, 2002

LR

4.4 globals

../fromfilter.nw 19

This filter only makes one connection to the LDAP server, thus there
is only one handle. The LDAP handle [d is protected from concurrent

accesses by the mutex variable 1d_mutex.

(ldap globals [i8d)=
(global ldap handle [I8H)
char xgearch dm;
char *pbind dn;

char *pass;
int EzIimid;

struct timeval Eimeoud;
char *Eerved;

Defines:
bind_dn, used in chunks [9, 1, E, and 3.
pass, used in chunks [[9 and E1l.
search_dn, used in chunks [[4, £, £, and A3.
server, used in chunks [9, £, £, £3, and 4.
szlimit, used in chunks and E1.
timeout, used in chunks [and 1.

(global ldap handle [i8H)=

pthread_mutex_t 1ld_mutex;
LDAP +[Id;
Defines:
1d, used in chunks [9, ET=23, E4, E7d, BU, and BT4d.

4.5 init_ldap

(init_ldap declaration [(8d)=
int
init_ldap(char *srv, char *binddn, char *searchdn,

Uses password 4 and sizelimit 3.

(o)

(64 [£9)

char *password,

int kizelimit)

August 18, 2002 ../fromfilter.nw 20

inc] (init_ldap function [d)= (fed)
(init_ldap declaration [i8d)
{

int r;

= BIND_DN;

= SEARCH_DN;
= srVv;

szlimity = gizelimidy;
Eimeoud.tv_sec = 10;
Eimeoud.tv_usec = 0;

if (password)
pasg = strdup(password);

else return -1;

if (searchdn)
Eearch _dn = searchdn;

if (binddn)
bind dn = binddn;

if (pthread_mutex_init (&ld_mutex, NULL)){
fprintf (stderr, "pthread_mutex_init returned 0!\n");
return -1;

[d = ldap_init(srv, LDAP_PORT);
if (MIdDA{

perror("ldap_init");

return -1;

}

ldap_set_option([d, LDAP_OPT_SIZELIMIT, (void *)&gizelimi{);
ldap_set_option([[d, LDAP_OPT_NETWORK_TIMEOUT, (void *)&Etimeout) ;

r = ldap_bind_s(Id, bind_du, password, LDAP_AUTH_SIMPLE);
if (r !'= LDAP_SUCCESS){

ldap_perror([d, "ldap_bind_s");

return -1;

}
pthread_mutex_unlock(&ld_mutex) ;

return O;

August 18, 2002 ../fromfilter.nw 21

Uses bind_dn [[34 f2, 14 [[8B, pass [34d, password 2, search_dn 2, server B2,
sizelimit [, szlimit [8d, and timeout [E4.
4.6 query_uid
(query_uid declaration R0d)= (fted pod)

int
query_uid(char *ffilter, struct PrivData *priv)

Uses filter [A.

(query_uid function poH)= (L6H)
(query_uid declaration 0Od)
{

char *attr;

int ret=0;

int r;

LDAPMessage *p;
LDAPMessage *res=NULL;
*cur=NULL;
BerElement *berptr=NULL;

pthread_mutex_lock(&ld_mutex) ;
(do ldap search B1)

(handle ldap results p2d)

(free allocated memory p2H)

done:
pthread_mutex_unlock(&ld_mutex) ;

return ret;
}

Uses attrib_pair [[7H.

August 18, 2002 ../fromfilter.nw 22

The basic search functionality is performed by calling 1dap_search._s.
The scope argument is set to LDAP_SCOPE_ONELEVEL; this means that we
wish to search only the immediate children of the base object (
in our case). If the server is down, we try to reconnect.

al (do ldap search R1)= (ko)

r=! (LDAP_SUCCESS) ;
while (r != LDAP_SUCCESS){
r = ldap_search_s([d, Eearch_dd,
LDAP_SCOPE_ONELEVEL,
EFiTted, (char **)BtEtribute names, 0, &res);
if (r == LDAP_SERVER_DOWN) {
ldap_unbind_s([d);

[d = ldap_init(Eervey, LDAP_PORT);

if (MIDA{
syslog(LOG, "query_uid: ldap_init: %s\n", strerror(errno));
ret = -1;
goto done;

3

ldap_set_option([[d, LDAP_OPT_SIZELIMIT, (void *)&gzlimif);
ldap_set_option([d, LDAP_OPT_NETWORK_TIMEOUT, (void *)&Eimeout) ;

ret = ldap_bind_s([d, bind_dn, pass, LDAP_AUTH_SIMPLE);

if (ret != LDAP_SUCCESS){
syslog(LOG, "query_uid: ldap_bind_s: %s\n", ldap_err2string(ret));
ret = -1;
goto done;

}

}else if (r !'= LDAP_SUCCESS){

syslog(LOG, "query_id: ldap_search_s: %s\n", ldap_result2error([d, res, 1));

Eafe fred(Eilten);

ret = -1;

goto done;

Uses attribute names [[7TH, bind_dn [[8d f2, filter [[4, 1d [8H, pass [¥d,
safe_free B74d, search_dn E2, server f2, szlimit [[84d, and timeout [[34.

August 18, 2002 ../fromfilter.nw 23

In (main function [i1d) we have set the result number to one because
we know that each user is unique. Thus we only check the first entries at-
tributes by calling 1dap_first_entry and then looping over the attributes.

] (handle ldap results p2d)= (ko)

if ((p = ldap_first_entry([d, res)) == NULL){
syslog(LOG, "query_id: ldap_first_entry failed!\n");
if (res) ldap_msgfree(res);
Eafe fred(filter);
ret = -1;
goto done;

attr = ldap_first_attribute([d, p, &berptr);

if (attr) do {
cur = attributes;
while (cur->name) {
if (!strcmp(attr, cur->name)) break;
cur++;
}

if (tcur) {
syslog(LOG, "query_id: didn’t ask for this attribute: %s\n", attr);

Yelse
cur->action(priv, p, attr);

}while ((attr = ldap_next_attribute([[d, p, berptr)) != NULL);

Uses filter [[J, 1d [[8H, and safe_free B74d.

22H (free allocated memory p2H)= (eoH)
if (!'berptr) ber_free(berptr, 0);
if ('res) ldap_msgfree(res);
if (!'p) ldap_msgfree(p);
Bafe fred(ffilten);

Uses filter [and safe_free B74A.

August 18, 2002 ../fromfilter.nw 24

4.7 attribute handlers

=3 (attribute handlers p)= (teH)
int
handleAuthorized(struct PrivData *priv, LDAPMessage *p, char *attr)
{

char **xvalues;
int num,i;
values = ldap_get_values([d, p, attr);

if (values){
num = ldap_count_values(values);

/* mailAuthorizedAddress is a multivalue attribute, so we
* allocate some memory for the array of values */
if ((priv->authorized = (char **)malloc(num+1)) !=NULL){

/* <copy [[num]] values from [[values]] to [[priv->authorized]]>> */

COPYMULTIVAT](values, priv->authorized);
}else syslog(LOG, "query_id: malloc: %s\n", strerror(errno));

ldap_value_free(values) ;
return O;

}else {
syslog(LOG, "query_id: ldap_get_values returned null for %s: %s\n",
attr, ldap_err2string(ldap_result2error(d, p, 0)));
return -1;

int
handleAlternates(struct PrivData *priv, LDAPMessage *p, char xattr)
{

int num,i;

char **xvalues;

values = ldap_get_values([d, p, attr);

if (values){

num = ldap_count_values(values);

August 18, 2002 ../fromfilter.nw 25

/* mailAlternateAddress is a multivalue attribute, so we
* allocate some memory for the array of values */
if ((priv->alternates = (char **)malloc((num+1)*sizeof (char *)))!=NULL){

/* <copy [[num]] values from [[values]] to [[priv->alternates]] test>> */

COPYMULTIVAT](values, priv->alternates);

}else syslog(LOG, "query_id: malloc: %s\n", strerror(errno));

ldap_value_free(values) ;
values = NULL;
return O;

}else {
syslog(LOG, "query_id: ldap_get_values returned null for %s: %s\n",
attr, ldap_err2string(ldap_result2error(Id, p, 0)));

return -1;
}
}
int
handleMail (struct PrivData *priv, LDAPMessage *p, char *attr)
{
char **values;
values = ldap_get_values([d, p, attr);
if (values){
/* mail is not multivalue so we just copy it */
if (xvalues)
if ((priv->mail = strdup(*values)) == NULL)
syslog(LOG, "query_id: strdup: %s\n", strerror(errno));
ldap_value_free(values) ;
values = NULL;
return O;
}else {
syslog(LOG, "query_id: ldap_get_values returned null for %s: %s\n",
attr, ldap_err2string(ldap_result2error(d, p, 0)));
return -1;
}
}
int

handleCn(struct PrivData *priv, LDAPMessage *p, char *attr)
{

August 18, 2002 ../fromfilter.nw 26

char **xvalues;
#ifdef DEBUG
syslog(LOG, "ldap_get_values([d, p, %s)\n", attr);

syslog(LOG, "is %d\n", ldap_get_values([d, p, attr));
#endif

values = ldap_get_values([d, p, attr);
if (values){

if (¥values) {
if (strlen(attr) >2) {
if ((priv->cn_el = strdup(*values)) == NULL)

syslog(LOG, "query_id: strdup: %s\n", strerror(errno));
Yelseq{

if ((priv->cn = strdup(*values)) == NULL)

syslog(LOG, "query_id: strdup: %s\n", strerror(errno));
}
#ifdef DEBUG

syslog(LOG, "got %s = %s\n", attr, *values);
#endif

}

ldap_value_free(values) ;
values = NULL;

return O;
}else {

syslog(LOG, "query_id: ldap_get_values returned null for %s: %s\n",
attr, ldap_err2string(ldap_result2error([d, p, 0)));
return -1;

}
Uses COPYMULTIVAL B7d and 14 [EH.

August 18, 2002 ../fromfilter.nw 27

4.8 foo

mailAuthorizedAddress is a multivalue attribute that contains email ad-
dresses that the user can use in his body headers. We store them in
priv->authorized.

as] (handle mailAuthorizedAddress attribute pd)=
values = ldap_get_values(d, p, attr);
if (values){
num = ldap_count_values(values);
/* mailAuthorizedAddress is a multivalue attribute, so we
* allocate some memory for the array of values */
if ((priv->authorized = (char **)malloc(num+1))!=NULL){
(copy num values from values to priv->authorized R7H)
}else syslog(LOG, "query_id: malloc: %s\n", strerror(errno));
ldap_value_free(values);
}else syslog(LOG, "query_id: ldap_get_values returned null for %s: %s\n",

attr, ldap_err2string(ldap_result2error(Id, p, 0)));
Uses 1d [XH.

August 18, 2002 ../fromfilter.nw 28

mailAlternateAddress is only conceptually different from mailAuthorizedAddress.
It contains addresses that correspond to the user in some way, while

mailAthorizedAddress contains addresses that correspond to functions

that user may perform (like ”Postmaster”, ”webmaster” etc..).

] (handle mailAlternateAddress attribute R7d)=
values = ldap_get_values([d, p, attr);
if (values){
num = ldap_count_values(values);
/* mailAlternateAddress is a multivalue attribute, so we
* allocate some memory for the array of values */

if ((priv->alternates = (char **)malloc((num+1)*sizeof (char *)))!=NULL){

/* <copy [[num]] values from [[values]] to [[priv->alternates]] test>> */

COPYMULTTIVAT|(values, priv->alternates);

}else syslog(LOG, "query_id: malloc: %s\n", strerror(errno));

ldap_value_free(values);
values = NULL;

}else syslog(LOG, "query_id: ldap_get_values returned null for %s: %s\n",

attr, ldap_err2string(ldap_result2error([d, p, 0)));

Uses COPYMULTIVAL B7d and 14 [E8.

Z7H (copy num values from values to priv->authorized p7H)= (B9
#ifdef DEBUG
syslog(LOG, "printing %s values:\n", attr);

for (i=0; i<num; i++)
syslog(LOG, "%s\n", values[il);

#endif

COPYMULTIVAT](values, priv->authorized);

Uses COPYMULTIVAL B7a.

August 18, 2002 ../fromfilter.nw 29

D=a (copy num values from values to priv->alternates test p8d)=
#ifdef DEBUG
syslog(LOG, "printing %s values:\n", attr);

for (i=0; i<num; i++)
syslog(LOG, "%s\n", values[i]);

#endif

COPYMULTIVAT|(values, priv->alternates);

Uses COPYMULTIVAL DSH BZ4.
U5B (defines p8H)=
#define COPYMULTIVATI(A,B) \

{for (i=0; i<num; i++)\
if ((B[i] = strdup(A[il)) == NULL){\
syslog(LOG, "query_id: strdup: %s\n", strerror(errno));\
break;\
n
B[i]=NULL;}

Defines:
COPYMULTIVAL, used in chunks B3, E7, and B84.

August 18, 2002 ../fromfilter.nw 30

29 (copy num values from values to priv->alternates pJ)=
#ifdef DEBUG
syslog(LOG, "printing %s values:\n", attr);

for (i=0; i<num; i++)
syslog(LOG, "%s\n", values[i]);

#endif

for (i=0; i<num; i++)
if ((priv->alternates[i] = strdup(values[i])) == NULL){
syslog(LOG, "query_id: strdup: %s\n", strerror(errno));
break;
}
priv->alternates[i]=NULL;

August 18, 2002 ../fromfilter.nw 31

cn isn’t multivalue so things are simpler

] (handle cn attribute Bd)=

#ifdef DEBUG

syslog(LOG, "ldap_get_values([d, p, %s)\n", attr);
syslog(LOG, "is %d\n", ldap_get_values([d, p, attr));
#endif

values = ldap_get_values([d, p, attr);
if (values){

if (*values) {
if (strlen(attr) >2) {
if ((priv->cn_el = strdup(*values)) == NULL)

syslog(LOG, "query_id: strdup: %s\n", strerror(errno));
Yelsed{

if ((priv->cn = strdup(*values)) == NULL)

syslog(LOG, "query_id: strdup: %s\n", strerror(errno));
}
#ifdef DEBUG

syslog(LOG, "got %s = %s\n", attr, *values);
#endif

}

ldap_value_free(values);
values = NULL;

}else syslog(LOG, "query_id: ldap_get_values returned null for s
attr, ldap_err2string(ldap_result2error([d, p, 0)));

Uses 1d [Z0.

: %s\n",

August 18, 2002 ../fromfilter.nw 32

ditto.
BI3 (handle mail attribute Bid)=

values = ldap_get_values([d, p, attr);
if (values){

/* mail is not multivalue so we just copy it */
if (xvalues)
if ((priv->mail = strdup(*values)) == NULL)
syslog(LOG, "query_id: strdup: %s\n", strerror(errno));

ldap_value_free(values);
values = NULL;

}else syslog(LOG, "query_id: ldap_get_values returned null for %s: %s\n",
attr, ldap_err2string(ldap_result2error(Id, p, 0)));

Uses 1d [X3.

5 wvalidation code

BIH (valid.c B1§)=
(copyright notice B)
(validate includes B2d)
(is_acceptable function B2H)
(validate_addr function B3H)

ETd (valid.h Bid)=
(copyright notice B)
#include <filtexn.h> /* for struct PrivData structure */
(validate_addr declaration B3d);
Uses filter 2.

August 18, 2002 ../fromfilter.nw 33

5.1 wvalidate includes

el (validate includes B2d)= (B1H)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <syslog.h>
#include <config.h>
#include <Eilfed.h>
#include <rfc822.h>
#include <iconv.h>
#include <aux.h>
Uses filter 2.

5.2 1is_acceptable

is_acceptable checks str against one and the members of alters, re-
turning 1 if the match was succesfull.

BZH (is_acceptable function B2H)= (B1Y)

int
is_acceptable(char *one, char** alters, char *str)

{

int 1i;

#ifdef DEBUG
syslog(LOG, "Checking if \"%s\" is acceptable\n", str);
#endif

if (one && !'strcmp(one, str)) return 1;
if (alters) {
for (i = 0; alters[i] ; i++) {

if (!'strcmp(alters([i], str)) return 1;

}

return O;

August 18, 2002 ../fromfilter.nw 34

5.3 validate_addr

The priv->from variable contains an ADDRESS structure. This structure
is a linked list of all the addr objects from the addrlst object contained
in priv->from. We must call is_acceptable (see (is_acceptable func-
tion B2H)) at least once for every addr object that has a mailbox. If the
mailbox isn’t acceptable with priv->alternates then it must be accept-
able with priv->authorized.

If one of the addr objects is a group object then from that object on
a sublist exists (terminated by a null object).

If no valid mailbox is found, then we create our own ADDRESS structure
with the mailbox member set to the LDAP attribute priv->mail. Also
we decide if the personal member will be priv->cn or priv->cn;lang-el
(unimplemented - currently we set personal to priv->cn in a very fascist

way :-)
il (validate_addr declaration B3d)= (B1d B3H)
ADDRESS*

validate_addr (ADDRESS **addr, struct PrivData* priv)

B3H (validate_addr function B3H)= (B1H)
(validate_addr declaration B3d)
{

ADDRESS *cur;

int authorized=0;

iconv_t cd;

char buf [BUFSIZ];

char *tobuf;

char *frombuf;

char *from_code;

int len, fleft, tleft;

for (cur = *addr; cur != NULL; cur=cur->next){
(if *cur wvalid break B4d)

}

if (cur == NULL) {
(make new ADDRESS B4H)

}

(check cur-zpersonal BY)
if (!cur->personal){
cur->personal = (char *)strdup(priv->cn);

}

return cur;

August 18, 2002 ../fromfilter.nw 35

We use the is_acceptable function to check cur->mailbox against
priv->mail, priv->alternates and priv->authorized. If cur is a group
item then we advance to the first item in the group.

B (if *cur wvalid break Bid)= (B3H)

if (cur->group && cur->next)
cur=cur->next;

if (cur->mailbox && is_acceptable(priv->mail, priv->alternates, cur->mailbox)) break;
if (cur->mailbox && is_acceptable(NULL, priv->authorized, cur->mailbox)) {
authorized=1;
break;

BZH (make new ADDRESS B4H)= (B34)

cur = (ADDRESS*) calloc(sizeof (ADDRESS), 1);

if (priv->mail) cur->mailbox = strdup(priv->mail);
rfc822_free_address(addr);

*addr = cur;

August 18, 2002 ../fromfilter.nw 36

B3 (check cur-spersonal BJ)= (B34)
if (cur->personal && !strncmp(cur->personal, "=7", 2)){

len = strpbrk(cur->personal+2, "?") - cur->personal - 1;
from_code = (char *)malloc(len);
(void)strlcpy(from_code, cur->personal+2, len);

frombuf = from_code;

while (*(frombuf)!=’\0’) {
frombuf = toupper ((frombuf));
frombuf++;

cd = iconv_open("UTF-8", (const char *)from_code);
if (cd '= (diconv_t)-1) {

fleft = strlen(cur->personal_decoded);
frombuf = cur->personal_decoded;

tleft = BUFSIZ;

tobuf buf;

len = iconv(cd, (const char **x) &frombuf, &fleft, &tobuf, &tleft);

if (fleft == 0 && len '= -1) {
if (memcmp(priv->cn_el, buf, strlen(priv->cn_el))){
Eafe_fred(cur->personal);
}
Yelse{
syslog(LOG, "iconv: %s\n", strerror(errno));
Eafe_fred(cur->personal);
}
(void)iconv_close(cd);
Yelse{
syslog(LOG, "iconv_open(UTF-8, %s) failed: %s\n", from_code, strerror(errno));
Eafe_fred(cur->personal);
}
Yelsed{
gafe_fred(cur->personal) ;
}
/%

#ifdef DEBUG
syslog(LOG, "encoding is %s, length %d chars\n", cur->personal+2, strpbrk(cur->persor
#endif

August 18, 2002 ../fromfilter.nw 37

if (!strncmp(cur->personal+2, "utf-8", strpbrk(cur->personal+2, "?") - cur->person
if (priv->cn_el){
#ifdef DEBUG

syslog(LOG, "1: %s\n", cur->personal_decoded);
syslog(LOG, "2: %s\n", priv->cn_el);

#endif
if (memcmp(cur->personal_decoded, priv->cn_el, strlen(priv->cn_el))){
(cur->personal) ;
3
Yelse{
TODO convert priv->cn to unicode so we can compare with cur->personal_decoc
¥
#if O

Yelse if (..) {
do this for every encoding we support

#endif
Yelsed{
(cur->personal) ;
¥
*/

Uses safe_free B74.

6 auxiliary functions

] (auz.c Bg)=

(copyright notice B)

(auz includes B7H)
(xmalloc function BsH)
(closeall function B8d)
(daemon function B9d)
(sighandler function [0d)

August 18, 2002 ../fromfilter.nw 38

B7a (auz.h B7d)=
(copyright notice B)
#ifndef FF_AUX"H
#define EF_AUX"H

#define gafe fred(A) {free(d); (A)=NULL;}

#define COPYMULTIVATI(A,B) \
{for (i=0; i<num; i++)\
if ((B[i] = strdup(A[il)) == NULL){\
syslog(LOG, "query_id: strdup: %s\n", strerror(errno));\
break;\
}B[i]=NULL;}

(xmalloc declaration B8d);
(daemon declaration B8d);
(sighandler declaration B9H);
#endif

Defines:
COPYMULTIVAL, used in chunks B3, E1, and E34.
FF_AUX_H, never used.
safe_free, used in chunks B4, [4, [64d, E1, B2, and B3.

6.1 aux includes

B78 (auz includes BTH)= (B9
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <syslog.h>
#include <errno.h>
#include <signal.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include <config.h>

August 18, 2002 ../fromfilter.nw 39

6.2 xmalloc

The common safe malloc replacement:
B=a (xmalloc declaration B8d)= (B7d B8Y)

void *
xmalloc(int sz)

BRH (xmalloc function B8H)= (B9
(xmalloc declaration B8d)
{
void *ptr = NULL;
ptr = malloc(sz);

if (ptr == NULL) {
syslog(LOG, "xmalloc: %s", strerror(errno));
exit (EXIT_FAILURE);

}

return ptr;

}

6.3 closeall function
B3 (closeall function B8d)= (B9

void
closeall(int fd)
{
int fdlimit = sysconf (_SC_OPEN_MAX);

while (fd < fdlimit)
close(fd++);

6.4 daemon
B=d (daemon declaration B8d)= (B7d B9d)
int
daemon(int nochdir, int noclose)

August 18, 2002 ../fromfilter.nw 40

BYA (daemon function B9d)= (B9
(daemon declaration B8d)
{
switch (fork())
{
case 0: break;
case -1: return -1;
default: _exit(0); /* exit the original process */

}

if (setsid() < 0) /* shoudn’t fail */
return -1;

/* dyke out this switch if you want to acquire a control tty in */
/* the future -- not normally advisable for daemons */

switch (fork())

{
case 0: break;
case -1: return -1;
default: _exit(0);
¥

if (!nochdir)
chdir("/");

if (!noclose)

{
closeall(0);
open("/dev/null" ,0_RDWR) ;
dup(0); dup(0);

}

return O;

6.5 sighandler function
BUH (sighandler declaration B9H)= (B7d [204)
void
sighandler (int signum)

August 18, 2002 ../fromfilter.nw 41

e (sighandler function [0d)= (B9
(sighandler declaration B9H)
{
syslog(LOG, "Got signal %d..\n", signum);
}

7 main function

anrs| (main.c foH)=
(copyright notice B)
(main includes Bod)
(main function [id)

(main includes fod)= (roH)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <syslog.h>
#include <errno.h>
#include <signal.h>
#include <ctype.h>
#include <config.h>
#include <E3TEed.h>
#include <directory.h>
#include <aux.h>

Uses filter [A.

August 18, 2002

(main function [1d)

../fromfilter.nw 42

(ot mrBe

extern struct smfiDesc [filten;

void
usage (void)

{

printf ("Usage: [options] -p sock\n");

options are:\n");

printf ("
printf ("
printf ("
printf ("
printf ("
printf ("

\t
\t
\t
\t
\t

P
-b

<file> \t\t unix socket to rendevouz with sendmail.\n");
<pind_dn> \t\t DN to bind on the LDAP Eerver\n");
<gearch_dm> \t\t base DN to use for searches \n");

<host> \t\t what host the LDAP is running on. \n");
<password> \t\t simple authentication for LDAP

\t\t\t\t (will prompt if missing).\n");
printf (" \t -h

\t\t this message.\n");

Uses bind_dn [[8q 2, filter [[J, password [, search_dn [[34d [, and server [34 A2

August 18, 2002 ../fromfilter.nw 43

aTH (main function fid)+= (Eod) <=
int
maifg(int argc, char *argv[])
{
(local vars and initialization i3)
while ((d = getopt(argc, argv, "db:p:H:h:s:f:P:p:")) != (char)EQF)
{
(handle flags: switch(c) ()
}
(set defaults i)
if (init_ldap(Eervey, bind_di, Eearch_din, password, Eizelimig) <O0)
exit (EXIT_FAILURE);
BEcH.sa_handler = sighandler;
sigaction(SIGSEGV, &gctH, NULL);
if (Es_daemon) daemon(1,0);
(register filter and call smfi main [i§)
}
Defines:

main, never used.

Uses act [, bind_dn [[8q I3, ¢ {3, is_daemon [Z, password 2, search_dn [[8q 7,
server E2, and sizelimit AJ.

August 18, 2002 ../fromfilter.nw 44

After declaring the local variables, we must initialize some of them
so that they have sane values. is the hostname the user chose,
bind_dd and Eearch_dd are the LDAP DNs, password is the LDAP simple
auth password and is the limit on LDAP entries returned from
a search.

a2 (local vars and initialization)= (B
char [d, *password, *Eervey, *pind_di;

char xgearch din;
int Eizelimid;
int @S daemon;
struct sigaction

o)
cth

= NULL;
= NULL;
=NULL;
= NULL;
Sizelimig = 1;
= 0;
Defines:
act, used in chunk EIH.
bind_dn, used in chunks [J, 2T}, £, and A3.
¢, used in chunks B, ETH, and E3.
is_daemon, used in chunks EIH and A3.
password, used in chunks [84, [9, £, 3, and 4.
search_dn, used in chunks [4, E1,], and A3.
server, used in chunks [[9, £, £, £3, and 4.
sizelimit, used in chunks [[8d, [9, and EIH.

August 18, 2002 ../fromfilter.nw

i

getopt returns in [d the character of each flag it encounters in the com-
mand line arguments. We do a switch on [to handle each flag. Most
of these are self-explanatory, but for an explanation check (usage func-
tion [never defined)). Of interest is the ’p’ option, where the connection
with sendmail is set up. We only support local/unix sockets for now. The
user specifies them like ”unix:/var/run/fl.sock” so we must discard the
leading ”unix:”.

(handle flags: switch(c) E)=
switch (@)
{
case ’d’:
LS daemon = 1;
break;
case ’h’:
usage () ;
exit (EXIT_SUCCESS) ;
case ’H’:

if (optarg == NULL) {
fprintf (stderr, "missing arg\n");
exit (EXIT_FAILURE);
}
= (char *)strdup(optarg) ;
break;
case ’s’:
if (optarg == NULL){
fprintf (stderr, "missing arg\n");
exit (EXIT_FAILURE);
}
= (char *)strdup(optarg) ;
break;
case ’b’:
if (optarg == NULL){
fprintf(stderr, "missing arg\n");
exit (EXIT_FAILURE);
}
bind_dn = (char *)strdup(optarg);
break;
case ’P’:
if (optarg == NULL){
fprintf (stderr, "missing arg\n");
exit (EXIT_FAILURE);
}
= (char *)strdup(optarg) ;
break;

) J .
case ’p’:

45

August 18, 2002 ../fromfilter.nw 46

if (!(optarg && *optarg)){
fprintf (stderr, "Bad port\n");
exit (EXIT_FAILURE) ;

}

if (smfi_setconn(optarg) == MI_FAILURE)

{
(void) fputs("smfi_setconn failed\n", stderr);
exit (EXIT_FAILURE);

}

if (!strncmp(optarg, "unix:", 5))
unlink(optarg + 5);

else if (!strncmp(optarg, "local:", 6))
unlink(optarg + 6);

break;

case ’7’:
default:
usage();
exit (EXIT_FAILURE) ;
}
Uses bind_dn [[8q f2, ¢ fF, is_daemon {2, password [, search_dn [[3g [,
and server [[Xd I2.
If, after parsing command line options, some values are left unset we

set the default values. is a special case were we must query the
user for the password.

(set defaults i4)= (1)
if ('Eerver) {
= (char *)strdup(HOST);
if ('Berverd) {

perror ("strdup") ;
exit (EXIT_FAILURE);

3

if (!password) {
= getpassphrase("password for ldap Eervey:");
if (!password) {
perror("getpass");
exit (EXIT_FAILURE);

}
Uses password I and server 2.

August 18, 2002 ../fromfilter.nw 47

Finaly we register our filter with the 1ibmilter subsystem and enter
the smfi main. If smfi main ever returns then surely an error has occured
so we return the error code as our exit status.

a3 (register filter and call smfi main)= (1)
if (smfi_register(ffilter) == MI_FAILURE)
{
fputs("smfi_register failed\n", stderr);
exit (EXIT_FAILURE);
}

return smfi_main();
Uses filter 2.

August 18, 2002 ../fromfilter.nw 48

8 GNU Free Documentation License

Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this li-
cense document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other
written document “free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It comple-
ments the GNU General Public License, which is a copyleft license de-
signed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

8.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice
placed by the copyright holder saying it can be distributed under the
terms of this License. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as
“you”.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within
that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the sub-
ject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that

August 18, 2002 ../fromfilter.nw 49

says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the gen-
eral public, whose contents can be viewed and edited directly and straight-
forwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup has
been designed to thwart or discourage subsequent modification by readers
is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, ITEX input format, SGML
or XML using a publicly available DTD, and standard-conforming sim-
ple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this Li-
cense requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

8.2 Verbatim Copying

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you
make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above,
and you may publicly display copies.

8.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back

August 18, 2002 ../fromfilter.nw 50

cover. Both covers must also clearly and legibly identify you as the pub-
lisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-
ing more than 100, you must either include a machine-readable Transpar-
ent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a com-
plete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin distri-
bution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

8.4 Modifications

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the
Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modifica-
tion of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

e Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

e List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

e State on the Title page the name of the publisher of the Modified
Version, as the publisher.

e Preserve all the copyright notices of the Document.

e Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

August 18, 2002 ../fromfilter.nw 51

e Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

e Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

e Include an unaltered copy of this License.

e Preserve the section entitled “History”, and its title, and add to it
an item stating at least the title, year, new authors, and publisher
of the Modified Version as given on the Title Page. If there is no
section entitled “History” in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

e Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

e In any section entitled “Acknowledgements” or “Dedications”, pre-
serve the section’s title, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedi-
cations given therein.

e Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

e Delete any section entitled “Endorsements”. Such a section may not
be included in the Modified Version.

e Do not retitle any existing section as “Endorsements” or to conflict
in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appen-
dices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties —
for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end of the
list of Cover Texts in the Modified Version. Only one passage of Front-
Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement

August 18, 2002 ../fromfilter.nw 52

made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

8.5 Combining Documents

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections entitled “History”
in the various original documents, forming one section entitled “History”;
likewise combine any sections entitled “Acknowledgements”, and any sec-
tions entitled “Dedications”. You must delete all sections entitled “En-
dorsements.”

8.6 Collections of Documents

You may make a collection consisting of the Document and other doc-
uments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and dis-
tribute it individually under this License, provided you insert a copy of
this License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

8.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distri-
bution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compila-
tion. Such a compilation is called an “aggregate”, and this License does
not apply to the other self-contained works thus compiled with the Docu-
ment, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

August 18, 2002 ../fromfilter.nw 53

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one quarter of the
entire aggregate, the Document’s Cover Texts may be placed on covers
that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

8.8 Translation

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all In-
variant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a
disagreement between the translation and the original English version of
this License, the original English version will prevail.

8.9 Termination

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

8.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this Li-
cense ”or any later version” applies to it, you have the option of following
the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by
the Free Software Foundation.

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of

the License in the document and put the following copyright and license
notices just after the title page:

August 18, 2002 ../fromfilter.nw 54

Copyright © YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with
the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections”

instead of saying which ones are invariant. If you have no Front-Cover
Texts, write “no Front-Cover Texts” instead of “Front-Cover Texts being
LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their
use in free software.

August 18, 2002 ../fromfilter.nw 55

9 Index

Here is a list of the identifiers used, and where they appear. Underlined
entries indicate the place of definition. This index is generated automati-

cally.
act: [IH, £2 1d: [ZG, [9, 21, P24, B3, 26, 74,
attrib_pair: [TH, 30, B14d
attribute names: [ZH, £ main: EIH
bind dn: =4, [9, 21, E14, EID, B2, pass: =3, [9, 21
a3 password: [[8d, [[Y, E1d, 1B, €3,
c: P, IR, ©2, i3 B3, B4
COPYMULTIVAL: E3, E74d, E78, E34, safe_free: pa, [3, (64, 1, BZ4,
8B, 874 £2h, B3, &3
FF_AUX_H: B@ search_dn: [=d, [[J, P, AT4d, A1H,
FF_FILTER H: BB 02, i3
FF_LDAP H: server: [Ed, [[Y, 21, 14, EIQ, £32,

filter: [d, b4, [, [64, [7d, P04, B3, B4
21, g24, P20, BIq, BZd, BUq, [1d, sizelimit: [[8q, [Y, EIH, £2
a3 szlimit: =4, [[9, E1
is_daemon: [IH, B2, 3 timeout: X4, [[9, B

10 List of code chunks

This list is generated automatically. The numeral is that of the first
definition of the chunk.

(cleanup function [[§)
(closeall function B8d)
(daemon declaration B8d)
(daemon function B94d)
(endofmessage declaration [id)
(endofmessage function pd)
(envelope declaration Bd)
(envelope function fid)

(header declaration i)

(header function pd)
(init_1ldap declaration [[8d)
(init_ldap function [[9)
(is_acceptable function B2H)
(main function [1d)

(query-uid declaration R0d)
(query_uid function ROH)
(sighandler declaration B9H)
(sighandler function [0d)
(struct PrivData declaration [[3)
(validate_addr declaration B3d)
(validate_addr function B3H)
(xmalloc declaration B8d)
(xmalloc function B8H)

August 18, 2002 ../fromfilter.nw

(libmilter callback decls [iH)
(libmilter callbacks [id)
(allocate and initialize private memory pd)
(attribute handlers p3)
(auz includes B7H)

(auz.c BE)

(auz.h BTd)

(check cur-gpersonal Bg)
(copy num values from values to priv->alternates R9)
(copy num values from values to priv->alternates test P8d)
(copy num values from values to priv->authorized P7H)
(copyright notice)

(create filter and query LDAP server Bd)
(defines 8H)

(delete headeTs [E)
(directory.c [[68)
(directory.h @)

(do ldap search B1)

(filter description [[2)
(filter.c Bd)

(filter.c includes Bd)

(filter.h BH)

(filter.h includes Bd)

(free allocated memory B2H)
(get sendmail symbol values Bd)

(global ldap handle [[8H)

(handle cn attribute BQ)

(handle mail attribute BId)

(handle mailAlternateAddress attribute B7d)
(handle mailAuthorizedAddress attribute Pg)
(handle flags: switch(c) ()

(handle ldap results p2d)

(if *cur valid break B4d)

(ldap globals [(8d)

(Idap includes [[7d)

(ldap types [[TH)

(local vars and initialization [2)

(main includes f0d)

(main.c [0H)

(make new ADDRESS B4H)

(register filter and call smfi main i)

(set defaults [i4)

(
(
(
(
(

valid.c B1H)

valid.h BId)
validate includes B2d)

write new From header [[1d)
write new Sender header [[1H)

56

	Introduction
	Copying
	libmilter API code
	callback prototypes
	envelope
	header
	endofmessage
	filter description (struct smfiDesc)
	struct PrivData declaration
	cleanup
	includes

	LDAP code
	outline
	ldap includes
	types
	globals
	init_ldap
	query_uid
	attribute handlers
	foo

	validation code
	validate includes
	is_acceptable
	validate_addr

	auxiliary functions
	aux includes
	xmalloc
	closeall function
	daemon
	sighandler function

	main function
	GNU Free Documentation License
	Applicability and Definitions
	Verbatim Copying
	Copying in Quantity
	Modifications
	Combining Documents
	Collections of Documents
	Aggregation With Independent Works
	Translation
	Termination
	Future Revisions of This License

	Index
	List of code chunks

